

ﬂzﬂ?’am;{m

rcafflmc solutions!

nnovative Integration’s

Zuma Toolset

Comprehensive tools and libraries for

DSP applications

Malue O is:
Walus L d8:
Walue 2 dis:

Walus 2 da:
Falue 4 ds:
Falus 5 is:

IEAnNpuNE-S

[mvorcmina |
Sl¥l 3w cled] ® B8

viimelitiis Lm: ~)

Pirplay completae.

Press aey kay to creste INEE-754 bimary floating poimc data file ..

Pata file DATA BTN creaced, Fress any key we display &5...
600000

000000
080804
000000
ogono0
000C00
000000
020CO0
ononoa
00500

© 10.000000
+ 11.000000
: 12000080
t 13.000000

L4.000000
15.000000
Lé.o0o0ec0
17.000000
L. 0BO0BD

¢ 19.000000

sy ke

Tumteadllody & o) m L2

SE® rc i EWAQS &2

Tine | Frequency | Test | Sunmaep | Sanen|
20 £ Tl Zuunly o E
Amplitude vs. Time

El_ e Daoenunmm

4/5/01

Getting Started tration

. real time solutions!

e Necessary components

e CCStudio compile tools are needed to compile programs
for all TI DSP cards

e JTAG emulator and CCStudio debug tools are necessary

for debugging code on TI DSPs

e Innovative Integration’s Code Hammer JTAG emulator or XDS510
compatible

M6x Zuma Toolset Installation

e Zuma is bundled with CCStudio I =_ 1
e Reduces installation errors ELE
e Ensures the proper version is used
e Simplifies installation — only one CD needed

Innovative;

Getting Started A V/A\regration,

2 .*r.a-’ time solutions!

e Insert the II CD and run the install for

1 the M6x under the PCI/cPCI products
Innovative tab.

Integration e Follow the installation instructions in
the manual.

e You should select the PCI JTAG

e There is no need to install the Borland
or Visual Basic components.

e Skip the JTAG Debugger Driver
Installation section.

e The typical installation will also install
CCStudio and you will need to enter a
password.

e At the end of the CCStudio installation
you must chose not to restart your
machine at this time. The installation
will continue after this.

M6x Hardware/Software
Users Guide

e=\Integration,

2 .*r.a-’ time solutions!

Getting Started PN\ raative

e Now turn off the machine
and install the JTAG card
and the M6x board.

e The POD should be connected
to the JTAG port on the card
and the A4D4 should be e
installed in site 0 before you
power up.

Innovative;

Getting Started A V/A\regration,

2 .*r.a-’ time solutions!

e When you power up, the
CCStudio setup program
may start automatically,
close it (exit) and the II
installation will set it up
automatically or it may be
done manually later.

e It is best to set up later since
you will not know the address ._____, .|
of the JTAG until the board is
recognized by windows.

gl
7

Getting Started Amm

. real time solutions!

v JTAG DiaFEE —Epg| ©® Test the JTAG Debugger
~JTAG Information installation by running
PCI JTAG JTAGDIAG from the start
Address 1xACO0 et | menu under M6x DSP
board.
- | e Pressing the Start button will
i | blink the ACCESS LED on the
JTAG POD if the driver is

connected properly.

Getting Started ‘ A ﬂ%%z%

.. real time Tolutions!

e Next Open UniTerminal
from the Windows start

menu. =T ! S L T
e From the File menu do a Coff
file ->Download and load the
Hello.out file in:
M6x/examples/target

e The screen should look the
same as shown on the right.

File Dsp Options Help

Echoing keystrokes... (press Esc to end)

|Status: Active. Dap application running |Dsp: MEx #O |Caff: Hello.out

HMSEW

2 .*r.a-’ i‘lmr_ ‘pﬂ.l'l'lfl'ﬂﬂ'.!"

Leaving UniTerminal running, Open CCStudio from the windows start menu.

e From the Project menu, select Open and open Hello.mak in the
M6x\examples\target directory.

e Open the source code by expanding the Project folder on the left, expanding
hello.mak project, expanding the source code folder, then double clicking the
hello.out file.

"' fii_genbx/CPU_1 - C6700 Code Composer Studio- Hello.mak

File Edit ‘“iew Project Debug Piofiler Option GEL Tools ‘window Help

@ H| b ER] o = diAaBm &R | EalEsEE] s %%t |

2| [T Fies ™ Hello.c (O]]
| | =0 GEL files <~ HELLO.C =

5‘ 16x.gel L+ Test file for Hbéx board —

E---DP aject 7

@ Hello.mak. #include "periph. h”

S) I -1 DSP/BIOS Config Hinclude "stdic h"

------ ~[B generic.cmd .

2 I {23 Include main()

§ ------ i Libraries 1 int key;

ﬁ E|--- ; Source:

b Hella.c enable monitor():

¥ clrscr();

é printf{"Hello World!~n"};

e printf{"“nEchoing key=strokes. . . (press Eszc to end)>n"):
1 do

i
® key = getchar():
ﬁl if (key = ESC) #+ Send character to TniTerminal {(except Esc
putchari{key): ~~ because TniTerminal doesn't like E=c)

Al

i: if (key == 13) putchar(10): - also =end linefeed if Enter is pressed

¥

—_ while(key = ESC): L
4? monitor(); |

el

- Bs
|DSP HALTED [For Help, press F1 Ln1,Col1 MUK 7

HMSEW

Getting Started /A [gacgedon

2 :cafflmc solutions!

e In the source code window, change “Hello World” to "Hello <your name>".
e From the Project menu select Build.
e You should get notification soon that your application rebuilt with no errors.

e Place the cursor on the Hello line and left click to move the cursor to this line.
Click the white hand on the left to set a break point.

:" Aii_genbx/CPU_1 - C6700 Code Composer Studio- Hello.mak

File Edit “iew Project Debug Profler Option GEL Tools ‘Window Help

Build BEM| SBR[o G ﬂlﬁléék?|u§+§|ugﬁs|€E§ELAf%fl?§
N I
k 5 | | =00 GEL files k3 ¥E110f(':l c e board =
G 7 7 Test file for Méx boar =
Set Break Point e 2
B3| |=-(] Project
x* = ﬁ Hello.mak #include "periph.h"
— (7] DSP/BIOS Canfig #include "stdic. k"
iy +[B] generic.cmd
. 7 Include maint)
: -] Libraries int key:
Sauic
. Helloc enable_monitor(};
clrscr();

printf{"~nEchoing keystrokes... {press E=zc to end)i~n"):
dao

i
key = getchar():
if(key != ESC) #7 Send character to UniTermninal (except E=c

D2 BN

putchar{kev): ~~ because UniTerminal doesn't like Esc)

Run P
: if {key == 13} putchar{l0}; ~~ also send linefeed if Enter iz pres=zed
} ¥
— while({key |= ESC):

S L nonitor(); B
| a1] oy

Inkbx "Hello. mak"
THS320C6x COFF Linker Version 4.00

Copvright (o) 1996-2000 Texas Instrumnents Incorporated
Bu11d Complete.
B

rrrrrr 0 Warnings

[H[ETETE, Buitd /
|DSP HALTED

[Ln15.Cd5 [[NUM G

For Help, press F1

4/5/01

Getting Started

% Innovative;

e=\Integration,

2 .*r.a-’ time solutions!

UniT erminal
File Dsp Options Help
Sl mE olels] = = 2l

ve. Dsp appl HELLO.C
< Test file for Mex board

enable mon
clrscr():

{

key = getchar():

if(key 1= ESC) / Send char
putcharikey): // becau=ze

ifikey == 13) putchar{ld). .~

E=c to end)~n"

_ 0] x|

printf("Hello San!~n") . N
rintf({"~nEchoing key=stroke=z. .{press

e From the File menu, select
File Download. Browse to
the Hello.out file that was
just rebuilt and click Open.

e After the file downloads,
press the Green Man icon
on the left and the program
will run to the Hello line and
stop.

e At this point the UniTerminal
screen should be clear and
the hello line should be half
yellow and half red indicating

that the processor has
stopped on that line.

4/5/01 11

HMSEW

2 .*r.a-’ i‘lmr_ ‘pﬂ.l'l'lfl'ﬂﬂ'.!"

e Press the Green Man icon
again and the program will

continue to run and the @unteminal __________________________________ EEK

UniTerminal will show the Eie Dsp pfions Help
appropriate output. alg| mm =@l B & 2]
Hello Zam!
Echoing keystrokes. .. (press Esc to end)
|5tatus: Active. Dzp application running |Dsp: MEx #O ||:|:|ff: Hello.out

Zuma Toolset

e Technical Summary
e Usage Examples

e DLL Overview

e DspComponent

> uUDENESA

v T <> >l _SE1

% Innovative;

ﬂzﬂﬁa’z’&{m

a-’i‘nr solution

Zuma Toolset
Technical Summary

Terminology /I [ieererion

. real time solutions!

e Host

e PC running Windows equipped with software applications
specifically designed to allow development of application
programs for DSP-equipped targets.

e Target

e Small, self-contained, "microcomputer-on-a-card”

e Features a digital signal processor (DSP) able to perform
control and data acquisition functions

e Three basic types:
e SBC: Able to run without a PC
e PCI: Requires a PCI slot within a conventional PC
e cPCI: Requires a PCI slot within a CompactPCI PC

Terminology

e Native Development

e Use Host SW to build applications that run on the Host
e BCB, MSVC, MSVB, Delphi, et al.

e Cross Development

e Use Host SW to build applications that run on the Target
e Code Composer, TI Compiler, TI Assembler, et al

e PCI and cPCI Targets
e Usually requires both Native and Cross development

e SBC Targets
e Usually requires just Cross development

Native Development

e Compiler

e Converts source (C/C++/Pascal) language source files
(.c/.cpp/.pas) into assembly language files (.asm)

e Assembler

e Converts assembly language files (.asm) into machine
language files (.obj).

e Linker

e Combines machine language files (.obj/.dcu) with library
files (.lib/.dll) to create target executable files (.exe)

Native Development Hﬁﬁ%

.. reafl time solutions!

e IDE

e Integrated set of tools to support many aspects of
application software development
e Editor
e Authoring of application source code
e Compiler/Linker/Assembler
e Conversion of source into executable code
e Debugger

e Seizes control of Host CPU to permit rapid discovery and correction of
software defects in executable code

Native Development

e Zuma DLL (Dynamic Link Library)

e Library of Host functions used to allow user-written
application programs to interact with DSP target boards

e Usable from within virtually any language
e C/C++, Visual Basic, Delphi, etc
e Note

e DOES NOT provide a means of using the DSP board for
any particular purpose “out-of-the-box”

e DOES provide a vehicle for basic target access,
initialization and control

Aﬂﬂmﬂ%{ﬁi@

Native Development

. real time solutions!

e DspComponent

e Simplified interface to any Zuma Host DLL

e Faster and easier development

e Less Host and Target programming knowledge needed
e Packaged as a drag-n-drop “component”

e VCL for Borland Builder

e ActiveX for MSVC, MSVB and others

e Facilitates target-independent applications, like
UniTerminal

Aﬂﬂmﬂ%{ﬁi@

Native Development

. real time solutions!

e Process

e Write/modify source code using editor

e Combine:
e Windows API, Zuma DLL or DspComponent and custom functions

e C(Convert source into executable (.exe) using compiler
e Test executable under debugger
e [terate 1..3 until defects eliminated

Aﬂﬂmﬂ%{ﬁi@

Cross Development

. real time solutions!

e Tools

e C/C++ Compiler

e Converts C/C++ language source files (.c) into assembly language
files (.asm)

e Assembler

e Converts assembly language files (.asm) into machine language
files (.obj).

e Linker

e Combines machine language files (.obj) with library files (.lib) to
create target executable files (.out)

Aﬂﬂmﬂ%{ﬁi@

Cross Development

. real time solutions!

e Tools (cont)

e Debugger

e Seizes control of target DSP to permit rapid discovery and
correction of software defects

e JTAG Debugger

e Type of debugger which controls the target using a dedicated
hardware communications channel, JTAG 1149.1

e Applet

e Utility program running on the Host PC to permit a specific
development activity

Cross Development

e Tools (cont)

e Target-Independent

e Standard I/O

e Popular C library functions allowing target programs to print
characters to the screen and read characters from the keyboard (like
DOS applications)

e UniTerminal

e Applet which steers target standard I/O to the Host keyboard and
screen

e BinView

e Applet which permits graphing of binary data stored in Host files or
memory

e Download

e Applet which configures a PCI or cPCI-type target to run a user-
written target application at Windows startup

Cross Development ﬂﬁ%

.. reafl time solutions!

e Tools (cont)

e Target-Independent
e JtagDiag
e Applet which initializes Innovative JTAG interface board.
e CoffDump
e Applet which reports memory usage of any target application

Cross Development ﬂﬁ%

.. reafl time solutions!

e Tools (cont)
e SBC-Specific Tools

e Burn

e Applet which configures an SBC-type target to run a user-written
application at power-on

e PromImage

e Applet which converts a user-written target file (.out) into format
needed by Burn applet (.bin)

e ComConfig

e Applet which configures the default communications speed (baud
rate) between SBC-type targets and Host applets

Cross Development ﬂﬁ%

.. reafl time solutions!

e Tools (cont)

e M6x-Specific Tools

e Boot
e Applet which downloads and runs benign program on target.
(Debugger aid).
e Q6x-Specific Tools
e QBoot

e Applet which downloads and runs benign program on target.
(Debugger aid).

e UniTerminal

e Supports .MPO files (clusters of up to four .OUT files) downloaded as
a unit

Cross Development

e Zuma Peripheral Libraries

e Library of Target functions used to allow user-written
application programs to interact with DSP peripherals:
e A/Ds, D/As, Digital I/O, UARTSs, PCI bus, etc.

e Note

e DOES NOT provide a means of using the DSP board for
any particular purpose “out-of-the-box”

e DOES provide a basis for sophisticated target peripheral
access, initialization and control

Cross Development

e Process

e Write/modify source code using editor

e Combine:
e TI C, Zuma Peripheral or custom functions

e Convert source into executable (.out) using compiler
e Test executable under debugger (Code Composer)
e Iterate 1..3 until defects eliminated

e PCI/cPCI: Download executable via DLL from within Host
application or at Windows startup

e SBC: Burn executable in ROM. Boot from ROM at power-
on

HMSEW

Zuma Application Model /A [tazetan

2 :cafflmc solutions!

Aol Mailbox Messages
Interface Application
DSP Card 4_‘ Application
| o =
rocessing
Busmaster .
Interface e »@® ><:> i
PCI \ \— Application
Interrupt
Interface VISR Processing
y :
7 ‘
2 :
o -9 ¥
Busmaster \— Application
Bulk Data
Processing
Function
@® Background threads - - .- Optional

4/5/01

e
" B .
. real time solutions!

UniTerminal Model /A [igaereton

UniTerminal
Mailhis Mailbox Messages
Interjace o] o] olcled ® el]
DSP Card 4_‘
> >
A
Busmaster
Interface
PC]
Interface [e GBSO RS [
n » Enhanced stdio interface
* Not intended for end-application use

Mailbox #0 interface consumed
while UniTerminal active

4/5/01

Application Model N nnovative

!’f b N =
y/a\Nintegration,

" B .
. real time solutions!

Miilbog Mailbox Messages
Interface
DSP Card 4_‘
> = Scope
: Example
Busmaster Z -
y Y o e e A P R R »@® > e SR
= | P
Interface VISR E | _
Win
e - VISR
* Mailboxes
Busmaster * DLL via
DspComponent
* Busmastering
@ Backooundthreads o Optional

4/5/01 32

Example Target Application

e Hello World
e Start UniTerminal. Target Init OK?
Start CCStudio
Project | Load \M6x\Examples\Target\Hello.mak
Click Project | Rebuild All
ick File | Load Program to download the executable
ick Debug | Run Free to run the executable
pbserve output on Terminal display.

) 0O 0)

Modify Target Application ﬂﬁ%

e The world is a harsh mistress. Edit the target
source (hello.c) to display:

" Goodbye, cruel World!”

e Recompile, download and run the modified code

Example Host Application ﬂﬁ%

-
o
alutions!

e Scope
e Start BCB
e |oad \M6x\Examples\Host\Scope\Scope.bpr
e C(lick File | Build Scope
e C(lick -~ to run the example

Innovative;

Example Host Application /Y /A [rzereen
.*r.a-’ time solutions!
e Scope
e Similar complexity to Verify COFF location
Armada ArbGen
example
e GUI-specific code in
ScopeMain.cpp e om | EmEE =
e Target-Specific code in =
DspBoardFtns.cpp =9
(326 lines of code)
4/5/01 36

Aﬂﬂmﬂ%{ﬁi@

Class Project

. real time solutions!

e Introductory Example Sequence
e Start Host IDE

e Create new Project

e Select File | New Application from the Menu
e Select File | Save All

e Name Project “ZumaDemo”

e Name Unitl “Main”

Class Project

INnnoyative

A b Y e
ye=\NIntegration

" B .
. real time solutions!

e The Goal

e Communicate with a target
application
e Demol.c

e Protocol

maimn()

{

A% Turn

Demal.c

const int MailboxID = 0

const int ResetCmd =

int data = 0;
int reps = 0;

Target / Host Communication Demo

#include "periph.h”

A7 Use mailbox 0 for communication +/

0xFFFF:

F* Used to sawe mailbox data read from host */
#% Counter for final loop */

on interrupts globally */

enable_interrupts();

A Synchronize with host +/

write_mailbox (777, MailboxID):

#* Loop

e Host Synchronization
e Keeps from losing com

mands
e Command Loop
e Check for Mailbox Data

e Read Command Word 4

e Reset Counter Command

i

/ data = read mailbox (MailboxID):

forewer doihg commands */

while (1==1)

4% Check to see if the host sent command */
if (check_inbox (HailboxID))

{
/% Host sent a command %/
data = read mailbox(MailboxID):

A% If a reset command was sent, set reps to 0 %/

£F otherwizse, increment reps L
if (data == ResetlCmd)

reps = 0;
else

+Hreps;

A% Zend 'reps' count back to host ¥/
write_mailbox(reps, MailboxID):

}

/% Could do other processing here while waiting for

e Send Counter to Host

+
}

commands to arriwe *f

4/5/01

Class Project

e Use DspComponent to control target
e Drop from the Innovative Tab onto the application form
e View Properties in the Inspector

e BoardType -- set to ibM62 "'F“_’”E'j_“‘”‘lig"“’“f”“‘” i
roperhies | Events
e CoffFile -- set to “Demol.out">: Boadie | =
e File to download sl eiDefa
s e ottt |0
L LOadS DLL On program start :-rl:tn;rruptEnal:ule falze
Left 32
e Target --setto 0 Nene. | DspCom
e ID number of M62mb 1 el
Taop 295
Width 24
Al shown A

Class Project [\

.. reafl time solutions!

e More on DspComponent
e Hit <Ctrl>-F1 to bring up Help File

e Public Properties
e MailboxCount
e Number of supported mailboxes
e MaillnFull and MailOutEmpty array
e Flag if data is available from target or has been received by target

e Mailbox array

e Read or write data to target. Will wait for data if reading, or wait for
last word to be read if writing.

Class Project [\

.. reafl time solutions!

e More on DspComponent

e Methods

e BootTarget()
e Resets and boots target board.
e Returns true if successful, false on failure
e Download()
e Downloads the COFF file. Returns false on failure
e Returns true if successful, false on failure

Create the Ul

e Add a Button to the Form
e Set Name to "DownloadBtn”
e Set Caption to "Download”

e Add a Message Label to the
Form
e Set Name to "Display”

® We W|” use th'S tO print You can use the Font

messages to the user property to make the
Display label larger.

Click on the Font
property, then on the
‘...” button to display a
selection dialog.

The Download Button M{%%%

. real time Solutions!

: /- . oo
. DOUbIe—CIICk On the ‘{-’Dld __fastecall TForml::DownloadBtnClick (TOhject *Sender)
7
Download button AR et
e Skeleton Handler appears in Display->caption = "Could not baot tazget";

return;

code window)

Ly /Y
/7 Ty to download the target code

= - /
o FI” In Download Sequence if (! IIDspCompl-*Download())
i
Display-*Caption = "Could not download to target';

e Run the application v,

}

e Did "Download Complete!” oo - vomtond comterer-;
Appear?
(&) Yes - go on!

'::::) N O... It may not seem like much, but this code
; will reset the board hardware, find and load the

o Is the COﬁ:FIIe property COFF file (also known as the .OUT file),

name correct? transfer it to the M62 memory and run it.

e Is the DspComponent
Enabled property true?

Innovative;

Target Synchronization A V/\ntegration

2 .*r.a-’ time solutions!

e The Problem

. Target may be unready for Display->Caption = "Download Completel";
7/
Commands S/ symchronirze with t:rget
const int MailkoxID = 0;
. The hOSt may need to Wait until int wvalue = IIDspCompl->Mailbox[MailboxID];
the target iS ConfigurEd and IIDspCompl-*Mailbox[MailboxID] = 0;
ready)

e Coordinate Host and Target

e Need to know if target has
reached some point in the code

® The SO I Uti O n b Add this code to the end of the
_ Download button handler you just
e Use a Read/Write pattern to created.

allow the target to catch up

e Note: the target uses the
opposite order than the host

Command #1 [\

.. reafl time solutions!

e The Target program
increments a countereach ..
command ffm Y

e Drop a new button on the form
e Rename the button “"CountBtn” .
e Change the Caption to “Count” ™=

e Create a button handler

e Have it send a ‘0’ command, read
the reply, and display it

e Run the program

e The display shows a hew number
each time the button is pressed...

Display->Caption = "Count = " + ApnsiString(count);

I [=] B3

Command #2 - Reset Count

e Implement the Reset function ™=
e Create a Reset Button o | Count = 0

e Implement its handler
e Send command code OxFFFF
e Fetch the reply
e Display the count...

e The count resets!

i
|' 1 l)
-,

In larger applications, commands
can be more complex, but the
idea is much the same.

